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                   Electromagnetic fields of a helix, and related topics 
 

 

In the regime of interest for heavy ion acceleration, where the wave speeds are much less 

than the speed of light and the transverse dimensions are a small fraction of a free space 

wavelength, quasi-static approximations to the EM fields should be sufficient. 

 

One “tricky” aspect involved in developing these quasi-static field solutions is how to 

define “voltage” when curl (E) isn’t zero. It is also important to recognize that the 

dominant source for the electric field is actually the charge on the helix wires and not the 

time derivative of the magnetic flux. 

 

The essential approximation involved is a very small pitch on the helix, namely 
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where 1/s n=  is the wire spacing. A “smooth” approximation to the currents and charges 

on the helix can then be used to calculate the fields at distances of order s/2 away from 

the wires (essentially a sheath helix model). A current ( , )I z t  flowing in the helical wires 

is then equivalent to an azimuthal sheet current  
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that is much larger than the axial sheet current / 2
z

K I aπ= . As a consequence, the 

dominant magnetic field components are 
Z

B  and 
r

B  created by this azimuthal current; 

B
θ

 is smaller by a factor of / 2s aπ  (1% in the oil helix).  

 

An azimuthally symmetric charge per unit length λ  (equivalent to a surface charge 

/ 2 aσ λ π=  on the sheath helix) is related to the current in the helical wires by the 

continuity equation 
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This charge acts as a source for an azimuthally symmetric electric field with 

components
r

E ,
z

E . If we neglect /B t
θ

∂ ∂  compared to this charge as the dominant source 

of the electric field, in a plane with constθ =  we can use 
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to describe the quasi-static electric field, and define the voltage on the helix as  

 

                                                  ( , ) ( , , )V z t r a z tφ= =                                                    (5)  

 

The final “link” required is the connection between this helix voltage and the time 

changing axial magnetic flux inside the helix. Using a path integral in Faraday’s law that 

goes inside the helix wires at their radius r a=  over a distance z∆ , encircling the 

magnetic flux inside the helix n z∆  times, we have a voltage change over z∆  given by 

 

                                       
0

( , , )
2

a

zB r z t
V n z rdr

t
π

∂
∆ = − ∆

∂∫                                          (6) 

 

In the continuous limit, we have 
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Here 

 

                                              
0

( , ) ( , , ) 2

a

z
z t B r z t rdrπΦ = ∫                                           (8) 

 

is the total flux inside the helix, created by both the helix azimuthal current and the 

primary strap current (when transformer coupling is used). 

 

Note that the azimuthal electric field at the helix 
1

/
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E t
a

θ
π

= − ∂Φ ∂  is / 2s aπ  smaller 

than the axial electric field (order of 1%). 

 

We also emphasize that the “sheath model” of the helix describes the EM fields 

accurately outside of radial distances within s/2 of the helix (~ 2 mm), since the spatial 

harmonics needed in a full field solution decay as 
2

exp
m

r a
s

π
− − . The great increase in 

complexity involved in resolving the EM fields on the fine scale of the wires seems 

unnecessary, except for quantifying the stresses in that region. 

 

 

Computational and analytical field  models: 

 

I’m not qualified to judge the best way to formulate a computational model, but it would 

seem that electrostatic and magnetostatic field solutions, with  
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 3 

 

                                    2 0, Bψ ψ∇ = = −∇                                                              (9) 

 

that are coupled through equations (3) and (7) (with the definitions in Eqs. 5 and 8) 

would be a useful approach . These field solutions could include end effects, models of 

the primary strap, the resistive termination region, ion beam charges as a source for the 

electric potential, secondary electrons etc. Indeed, this may be quite close to the WARP 

code approach already being used by Dave and Enrique for all I know. The essential 

approximation would be the use of a continuous sheet model of the helix, in addition to 

the quasistatic approximation to Maxwell’s equations. 

 

An analytical model of wave propagation on the helix (not including end effects) can also 

be formulated with this model by going into Fourier space ( exp( )jkz− ) and solving the 

Laplace equations subject to the usual boundary conditions. The result can be put in the 

form of transmission line equations with equivalent k-dependent capacitance and 

inductance per unit length. The magnetostatic field H ψ= −∇
���

 created by K nI
θ

=  

identifies an equivalent inductance ( )L k using Eq (7), and a calculation of the 

electrostatic potential φ  created by the line charge λ  identifies an equivalent capacitance 

using ( ) ( )C k r aλ φ= = .     

 

 

Traveling wave fields 

 

In a forward moving traveling wave (beyond the excitation region) where everything is a 

function of /
c

t z v− , we see from Eq. (7) that the voltage and magnetic flux have the 

same ( / )
c

f t z v−  dependence (are “in phase”), with peak values 
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Therefore, the average axial magnetic field inside the helix (approximately constant in r 

at long wavelengths) is related to the voltage as 
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For the oil helix in NDCX, a 9.5 kV peak voltage corresponds to a 100 gauss peak 

magnetic field. 

 

The axial electric field at the helix, /
z

E V z= −∂ ∂ , is of course “90 degrees out of phase” 

with the voltage and axial magnetic field. 



 4 

 

Speculations on secondary electron “cycling” mechanisms  

 

The E and B fields of a traveling wave on the helix are sketched in the top figure that 

follows. The orbit of a secondary electron released near the peak of the axial electric field 

is sketched in the bottom figure. This electron would likely pick up appreciable velocity 

perpendicular to the magnetic field at the point shown, of order E/B. It would be 

accelerated along the B field lines by the electric field, but decelerated by the “magnetic 

mirror force”. It is likely that this electron would cycle back and strike the insulator with 

appreciable energy, releasing more than one electron if the SEY is > 1. 

 

 
  

 

 


